

Philip Harris

Jin Huang

Massachusetts Institute of Technology

Brookhaven National Lab

Al and Data readout at LHC

40 MHz 1 kHz

Al and Data readout at LHC

40 MHz 1 kHz

EIC: unique collider

→ unique readout system challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \text{cm}^{-2} \text{s}^{-1}$
x-N cross section	50 μb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M N _{ch} /s	30G+ N _{ch} /s

- EIC luminosity is high, but collision cross section is small ($\propto \alpha_{EM}^2$) \rightarrow low collision signal rate
- ▶ EIC events are precious and have diverse topology → stream recording all collision data
- ▶ Background and systematic control is crucial → AI data reduction, understand AI biases

Real-time computing for streaming data pipeline

- Despite low signal rate, the raw data rate can be filled with noises and background
- Bright opportunities for

- Streaming data reduction to fit permanent storage
- 2. Monitoring, feedback to detector/machine control
- 3. Online event reconstruction

[EIC CDR]

Variety of Al Algorithms

Many Al Algorithms are in the pipeline

This session: Al application to EIC Readout

- Global overviews:
 - AI in readout at HEP: Dylan Rankin (MIT)
 - EIC Readout Overview: Fernando Barbosa (JLab)
- Al Applications
 - Real-time AI tracking and tagging:
 Dantong Yu (NJIT)
 - Real-time data compression with Bicephalous Convolutional Auto-Encoder:
 Yi Huang (BNL)
 - Event tagging and triggering on FPGA:
 Sergey Furletov (JLab)

Extra information

x~0.5, Q^2 ~ 5000 (GeV/c)^2, horizontal cut away

Signal data rate -> DAQ strategy

- ▶ What we want to record at the end: total collision signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹
- ▶ Therefore, we could choose to stream out all EIC collisions data
- Orders of magnitude different from LHC, where it is necessary to filter out uninteresting p+p collisions (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)

But, that is not the whole story: e.g. synchrotron background is still uncertain!

Energy dependence of MAPS vertex tracker to synchrotron

Beam-pipe exit-location

Note: all photons simulated for detector interaction, without cuts on z or energy. July-2020 lattice/chamber

Strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps, see also link), we can aim for filtering-out from background and streaming all collision without a hardware-based global triggering
 - Diversity of EIC event topology → streaming DAQ enables expected and unexpected physics
 - Streaming minimizing systematics by avoiding hardware trigger decision, keeping background and history
 - Aiming at 500kHz event rate, multi-us-integration detectors would require streaming, e.g. TPC, MAPS

EIC streaming DAQ

→ Triggerless readout front-end (buffer length: µs)

→ DAQ interface to commodity computing (e.g. FELIX/CRU). Background filter if excessive background rate

→ Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length:s)

→ Online monitoring and calibration (latency: minutes)

→ Final Collision event tagging in offline production (latency: days+)

Synchrotron background: detector response

- In the most recent lattice + beam chamber geometry, there is a known issue with main dipole fan reflect over far upstream beam chamber to Be-beam pipe section.
- Beam chamber tuning on-going, expect to reduce by orders of magnitude [DO NOT QUOTE THIS RATE]
- The reflected dipole fan induce high hit rate in barrel detectors prior to photon shield tuning, but high-Z coating on chamber, e.g. 2- μ m Au coating (0.06 X_0) on Be pipe significantly reduces the synchrotron rate

